Please enable JavaScript or talk to your local administrator to get JavaScript enabled.
Skip filters
Skip facets
  • 74

  • 46

  • 27

  • 13

  • 10

  • 7

  • 5

  • 5

  • 5

  • 5

Funder Group
Research Organization
FOR (ANZSRC) Category
RCDC Category
Country of Funder
Start Year
Active Year
Similar Projects for


Developing a SMART scaffold for bladder augmentation

Funder: National Institute of Biomedical Imaging and Bioengineering

Funding period
USD 1.4 M
Funding amount
SUMMARY Each year in the United States, trauma, radiation therapy to treat urological cancers, severe cases of spina bifida, and interstitial cystitis contribute to at least 14,000 bladder augmentation enterocystoplasty surgeries. Although it is the standard of care for patients with an end-stage pathologic bladder, enterocystoplasty causes many complications due to anatomical and physiological differences between bladder tissue and the bowel tissue used to augment the bladder?s capacity. Several strategies have been reported to replace enterocystoplasty and regenerate bladder tissue but these have failed clinically. Reasons for the failure include the common use of phylogenetically dissimilar pre-clinical animal models that do not accurately represent the human bladder or its disease condition, the use of inadequate materials to serve as scaffolds for cells to grow on and regenerate bladder tissue, the use of often diseased autologous bladder cells that have lost the capacity to regenerate functional bladder tissue, and an inability to continuously monitor the tissue regeneration process to identify potential problems at an early stage. As a result, there is currently no viable alternative to augmentation enterocystoplasty. Regenerative engineering is a convergence of advanced material science, stem cell science, physics, and clinical translation. The overall goal of this project is to drive the development of unprecedented regenerative engineering tools and technologies via the integration of stem cell science, advanced biomaterials, and bio-integrated electronics to enable the regeneration of functional bladder tissue and the non-invasive, real-time assessment thereof to better predict outcome. Toward this goal, we have demonstrated our ability to: a) regenerate vascularized and innervated bladder tissue in a rat bladder augmentation model using a combination of bone marrow (BM) mesenchymal stem cells (MSCs), hematopoietic stem/progenitor cells (HSPCs), and an antioxidant citrate-based biodegradable elastomer, b) demonstrated successful bladder reconstruction with autologous cell-seeded POC scaffolds at 6 months in baboon; c) measure rat bladder pressure and control its function via a bio-integrated electronic strain gauge and light-activated excitatory channels, d) integrate stretchable electronics into citrate-based elastomers, and e) achieve wireless transmission of real time physiological data obtained in vivo using bio-integrated electronics. Towards our goal, the specific aims of this proposal are to: 1) Design, fabricate, and characterize bio-integrated electronics that monitor and modulate the function of regenerating bladder tissue via telemetry, 2) Engineer and characterize Stretch Monitoring Advanced Regenerative Telemetric (SMART) scaffolds for bladder augmentation, and 3) Assess the safety and efficacy of bladder conformal stretchable electronics and SMART scaffolds in a baboon bladder augmentation model.

USD 115.6 M
Aggregated funding amount
USD 590 K
Average funding amount
Project list item
Alpha1H: A Unique Bladder Cancer Therapeutic, Acting with Great Precision

European Commission

USD 2,452,885
2020 - 2022
Project list item
Dissecting myeloid cell-mediated resistance to immune checkpoint blockade in bladder cancer


USD 703,400
2020 - 2025
Project list item
CD40 agonism for the treatment of bladder cancer

National Cancer Institute to CHRISTOPHER STUART GARRIS

USD 64,554
2020 - 2023
Project list item
A new bladder cancer model based on tissue reprogramming and gene targeting

National Cancer Institute to FLAMINIA TALOS, DAIFENG WANG

USD 203,843
2020 - 2021
Project list item
Roles of epigenetic regulators in bladder cancer progression

University of California - Cancer Research Coordinating Committee to Zhu Wang

USD 74,960
2020 - 2020
Project list item
Engineering Smart Solutions for Disorders of the Bladder Urothelium

Engineering and Physical Sciences Research Council

2019 - 2023
Project list item
Bladder cancer chemotherapy potentiation with a multiprong arachidonic acid pathway modulator

National Cancer Institute to PAUL THOMAS HENDERSON

USD 300,000
2019 - 2020
Project list item
[The association between SORL1 and advanced bladder cancer] - Original in Japanese

Japan Society for the Promotion of Science to Takanobu UTSUMI

USD 26,335
2019 - 2021
Project list item
TiO2 photoreaction application in bladder cancer cells

São Paulo Research Foundation to Ricardo Carneiro Borra

2019 - 2020
Project list item
Role of Fgfr2 signaling in bladder injury and regeneration

National Institute of Diabetes and Digestive and Kidney Diseases to CARLTON MATTHEW BATES

USD 234,750
2019 - 2022
Project list item
DNA adductome of human bladder from the tobacco exposome

National Institute of Environmental Health Sciences to ROBERT J. TURESKY

USD 922,448
2019 - 2023
Project list item
[Cancer immunotherapy targeting treatment-resistant urothelilal cancer stem cells] - Original in Japanese

Japan Society for the Promotion of Science to 愛子 村井

USD 38,275
2019 - 2021
Project list item
The role of a new molecular driver in bladder cancer

National Cancer Institute to DALEY MORERA

USD 90,032
2018 - 2021
Project list item
Novel 3D personalized bladder cancer model on demand: A new era for personalized medicine.

Canadian Institutes of Health Research to Alan I So, Claudia Itze Chavez-munoz

USD 284,120
2018 - 2021
Project list item
Elucidating immunotherapy resistance mechanisms in non-T cell-inflamed bladder cancer

National Cancer Institute to RANDY F. SWEIS

USD 425,338
2018 - 2022
Project list item
Novel recombinant BCG for immunotherapy of bladder cancer

National Cancer Institute to BORIS SHOR

USD 290,014
2018 - 2020
Project list item
Prevention of Urinary Bladder Cancer with Two Clinically-Ready Agents (Everolimus andNaproxen) When Administered in Combination

National Cancer Institute to CLINTON GRUBBS

USD 709,567
2018 - 2021
Project list item
Regulation of Bladder Umbrella Cell Paracellular Permeability by Stretch

National Institute of Diabetes and Digestive and Kidney Diseases to AMITY FENN EATON

USD 77,959
2018 - 2019
Project list item
Circulating tumor DNA as a predictive biomarker in metastatic bladder cancer

Canadian Institutes of Health Research to Gillian Rae Vandekerkhove, Alexander William Wyatt

USD 79,759
2018 - 2021
Project list item
Role of B-arrestins in bladder cancer progression and response to chemotherapy

United States Department of Veterans Affairs to BAL L LOKESHWAR

2018 - 2022
load more...