Please enable JavaScript or talk to your local administrator to get JavaScript enabled.
Skip filters
Skip facets
Funder
  • 201

  • 106

  • 28

  • 27

  • 22

  • 21

  • 16

  • 15

  • 13

  • 13

Funder Group
Research Organization
FOR (ANZSRC) Category
RCDC Category
Researcher
City
State
Country
Country of Funder
Start Year
Active Year
Similar Projects for

Project

DNA adductome of human bladder from the tobacco exposome

Funder: National Institute of Environmental Health Sciences

Funding period
USD 922 K
Funding amount
Abstract
Summary More than 70 chemicals in tobacco smoke are carcinogens. Tobacco smoking is a risk factor for bladder cancer; however, despite many years of study, the principal chemicals in tobacco smoke and environment that damage DNA of the bladder are unknown. Aromatic amines (AAs) and heterocyclic aromatic amines (HAAs) arise in tobacco smoke and are responsible for much of the mutagenicity in urine of smokers. Some AAs (and possibly HAAs) are bladder carcinogens, and also induce liver, bladder, and colorectal cancer in rodents, and likely contribute to these cancers in humans. 4-Aminobiphenyl (4-ABP) is a human bladder carcinogen; however, several alkylanilines and structurally related HAAs occur in tobacco smoke at levels up to 100-fold greater than 4-ABP. Some epidemiological studies have linked N-nitroso compounds and polycyclic aromatic hydrocarbons as risk factors for bladder cancer. Robust measurements of DNA adducts are important to understand the chemicals in tobacco smoke, the environment, and diet that damage the bladder and may contribute to bladder cancer. Apart from 4-ABP, the chemicals in tobacco smoke that damage bladder DNA are unknown. The objective of this application is to apply robust screening tools to identify DNA adducts derived from exogenous and endogenous sources that damage bladder DNA. We will employ our newly developed mass spectrometry (MS) adductomic tools to identify the major chemicals in tobacco smoke condensate that form DNA adducts in the bladder of smokers. In Aim 1, we will conduct studies with cigarette smoke extract (CSE) and human bladder cells incubated alone or in co-culture with hepatocytes to assess the role of liver metabolism in DNA damage of the bladder. The panel of DNA adducts formed in bladder cells with CSE will serve as a guide to facilitate the characterization of the DNA adductome of the urothelium of smokers and nonsmokers undergoing bladder cancer surgery in Aim 2. Some procarcinogens in CSE can reach the bladder and undergo bioactivation by P450s expressed in the bladder, particularly aromatic amines and HAAs. Therefore, in Aim 3, we will examine the urinary exposome of AAs and HAAs in smokers participating in a tobacco cessation study by novel mass- tagging methods to measure the totality of these potential bladder carcinogens in urine, and assess the capacity of bladder enzymes to bioactivate these compounds. Our research is relevant to NIH's mission on public health. Our studies will provide a greater understanding about genotoxicants in tobacco smoke the environment that damage bladder DNA and contribute to bladder cancer. By merging chemical exposures and DNA adducts with mutational data, clues about the identities of environmental, dietary and endogenous genotoxicants can be established to identify subjects at risk for bladder cancer. Once identified, pragmatic measures can be taken to reduce human exposure to chemicals, by changes in life- style or mitigation of environmental exposures, which are probably the most efficient means of chemoprevention.

 
595
Projects
USD 291.7 M
Aggregated funding amount
USD 640 K
Average funding amount
Project list item
Intravesical delivery of an Fc-enhanced CD40 agonist antibody for the treatment of bladder cancer

Bladder Cancer Advocacy Network to Jeffrey Ravetch, David Knorr

USD 300,000
2020 - 2022
Project list item
Epigenetic regulators of subtype plasticity in bladder cancer

Bladder Cancer Advocacy Network to John Robert Christin

USD 1,700
2020 - 2020
Project list item
Recombinant CCL2 as a novel treatment strategy for bladder cancer

Bladder Cancer Advocacy Network to Neelam Mukherjee, Robert Scott Svatek

USD 50,000
2020 - 2021
Project list item
Defining NRF2 induced tumor invasion in bladder cancer

Bladder Cancer Advocacy Network to Yuki Kita, William Youngkwan Kim, Bernard Weissman

USD 50,000
2020 - 2021
Project list item
Alpha1H: A Unique Bladder Cancer Therapeutic, Acting with Great Precision

European Commission

USD 2,452,885
2020 - 2022
Project list item
Dissecting myeloid cell-mediated resistance to immune checkpoint blockade in bladder cancer

National Cancer Institute to NINA BHARDWAJ, JUN ZHU, MATTHEW GALSKY

USD 703,400
2020 - 2025
Project list item
Implication of neutrophil extracellular traps in the efficacy of bladder-sparing therapy in muscle invasive bladder cancer

Canadian Institutes of Health Research to Wassim Kassouf, Ciriaco A. Piccirillo, Jonathan David Spicer

USD 138,878
2020 - 2025
Project list item
Chimeric RNAs and their implication in lymphatic metastasis of bladder cancer

National Cancer Institute to HUI LI

USD 205,913
2020 - 2025
Project list item
CD40 agonism for the treatment of bladder cancer

National Cancer Institute to CHRISTOPHER STUART GARRIS

USD 64,554
2020 - 2023
Project list item
Effect of APOBEC3 on Bladder Cancer Biology and Response to Immunotherapy

National Cancer Institute to ANDREW TRUONG

USD 45,016
2020 - 2023
Project list item
A new bladder cancer model based on tissue reprogramming and gene targeting

National Cancer Institute to FLAMINIA TALOS, DAIFENG WANG

USD 203,843
2020 - 2021
Project list item
Identification and analysis of early prognostic markers of bladder cancer using generated nanobodies

Russian Science Foundation to Sergei Tillib

 
2020 - 2022
Project list item
Roles of epigenetic regulators in bladder cancer progression

University of California - Cancer Research Coordinating Committee to Zhu Wang

USD 74,960
2020 - 2020
Project list item
A canine model for human high-risk non-muscle invasive human bladder cancer – molecular and environmental considerations.

V Foundation for Cancer Research to Matthew Breen

USD 500,000
2019 - 2021
Project list item
Chemotherapy plus PD-1 blockade as bladder-sparing treatment for muscle-invasive bladder cancer

V Foundation for Cancer Research to Matthew D Galsky

USD 600,000
2019 - 2022
Project list item
Unravelling Mechanisms of Resistance to Checkpoint Inhibition in Canine Urothelial Carcinoma

V Foundation for Cancer Research to Nicola J. Mason

USD 500,000
2019 - 2021
Project list item
Engineering Smart Solutions for Disorders of the Bladder Urothelium

Engineering and Physical Sciences Research Council

 
2019 - 2023
Project list item
Implementing Risk-aligned Bladder Cancer Surveillance

United States Department of Veterans Affairs to FLORIAN R SCHROECK

 
2019 - 2023
Project list item
[The association between SORL1 and advanced bladder cancer] - Original in Japanese

Japan Society for the Promotion of Science to Takanobu UTSUMI

USD 26,335
2019 - 2021
load more...