Please enable JavaScript or talk to your local administrator to get JavaScript enabled.

Project

Elucidating immunotherapy resistance mechanisms in non-T cell-inflamed bladder cancer

Funder: National Cancer Institute

Funding period
USD 425 K
Funding amount
Abstract
PROJECT SUMMARY Muscle invasive urothelial bladder cancer is a clinically aggressive disease with poor outcomes despite modern therapies. Recently, antibodies targeting the PD-1/PD-L1 immune checkpoint pathway have shown efficacy and were approved for use for locally advanced or metastatic bladder cancer. In some patients, impressive and durable clinical responses are observed, yet the rate of response remains modest at 20%. Mechanisms of pri- mary immune resistance in bladder cancer are not fully understood. The presence of a T cell-inflamed tumor phenotype has been associated with improved survival and response to immunotherapies. T cell-inflamed tu- mors can be identified by the presence of intratumoral CD8+ T cells or expression of a T cell gene signature. Emerging data have indicated that certain oncogenic pathways, such as FGFR3, are activated exclusively in non-T cell-inflamed bladder cancers. The underlying hypothesis of this proposal is that FGFR3 activation pre- vents spontaneous T cell priming in bladder cancer and may be therapeutically targeted to restore sensitivity to immune checkpoint blockade. A mechanistic investigation into the immunomodulatory effects of FGFR3 will be pursued through (a) a new genetically-engineered mouse model system with tamoxifen-inducible KrasG12D/p53fl/fl carcinomas that also express an activating FGFR3K644E mutation, (b) a syngeneic transplantable mouse model system using the MB49 bladder cancer cell line with model antigen expression, (c) in vitro studies examining differential gene expression in CRISPR-Cac9 derived FGFR3 knockout compared with FGFR active tumor cells, and (d) by an analysis of the immune microenvironment and FGFR3 expression in human bladder specimens using RNA in situ hybridization and multichannel immunofluorescence. The predictive capacity of these param- eters will be assessed in relation to outcomes for patients treated with anti-PD-1/L1 immunotherapy. Dr. Sweis is a physician-scientist from the University of Chicago and is the principle investigator on this study. He has devised a career development plan to obtain training in advanced tumor immunology and laboratory mouse modeling in order to facilitate his development as an independent investigator. He has developed a mentoring committee with broad expertise that is led by Dr. Thomas Gajewski, an internationally renowned expert in cancer immunology. Dr. Sweis has dedicated his efforts to the investigation of immunotherapy resistance mechanisms to improve outcomes for patients.
Similar projects All >
Sorted by: Start Date
Project list item
Characterization of Nectin-4 expression in molecular subtypes of urothelial cancer and mechanisms of resistance to enfortumab vedotin

Bladder Cancer Advocacy Network to Carissa Ellen Chu

USD 1,700
2020 - 2020
Project list item
Defining NRF2 induced tumor invasion in bladder cancer

Bladder Cancer Advocacy Network to Yuki Kita, William Youngkwan Kim, Bernard Weissman

USD 50,000
2020 - 2021
Project list item
Targeting regulatory B cells (Bregs) to improve anti-bladder cancer immunity

Bladder Cancer Advocacy Network to Burles Avner Johnson, David McConkey

USD 50,000
2020 - 2021
Project list item
Implication of neutrophil extracellular traps in the efficacy of bladder-sparing therapy in muscle invasive bladder cancer

Canadian Institutes of Health Research to Wassim Kassouf, Jonathan David Spicer, Ciriaco A. Piccirillo

USD 138,878
2020 - 2025

System

Categories
  • FOR (ANZSRC)

    1107 Immunology

  • FOR (ANZSRC)

    1112 Oncology and Carcinogenesis

  • RCDC

    Biotechnology

  • RCDC

    Cancer

  • RCDC

    Clinical Research

  • RCDC

    Genetics

  • RCDC

    Immunization

  • RCDC

    Urologic Diseases

  • RCDC

    Vaccine Related

  • HRCS HC

    Cancer

  • HRCS RAC

    2.1 Biological and endogenous factors

  • HRCS RAC

    5.1 Pharmaceuticals

  • Health Research Areas

    Biomedical

  • Broad Research Areas

    Basic Science