Please enable JavaScript or talk to your local administrator to get JavaScript enabled.


Role of B-arrestins in bladder cancer progression and response to chemotherapy

Funder: United States Department of Veterans Affairs

Funding period
Funding amount
Bladder cancer is the most expensive cancer to treat. Frequent recurrence and treatment refractoriness are the most common causes of morbidity and high cost of treatment of this disease. Males are three times more likely to develop bladder cancer. Therefore, the United States Veterans are at higher risk of developing bladder cancer. The high-grade, muscle invasive bladder cancers are difficult to treat and neoadjuvant and adjuvant chemotherapies have only modest benefits for overall survival. The investigators identified a pair of molecular markers that potentially determine response to chemotherapy, especially towards the Gemcitabine + Cisplatin chemotherapy combination. The markers ?-Arrestin 1 (BARR1) and ?-Arrestin 2 (BARR2) are members of the intracellular signaling complex triggered by chemokine receptors. The research group investigated muscle invasive bladder cancer tissues and found that BARR1 and BARR2 expressions are associated with treatment failure and metastasis. Further, in vitro studies using established bladder cancer cell lines showed an inverse correlation between BARR2 levels and the cancer stem cell phenotype, metastatic potential, and resistance to Gemcitabine induced cytotoxicity. Conversely, BARR1 expression correlated with metastasis and cancer stem cell properties. The principal hypothesis of this project is BARR1 and BARR2 are regulators of BC cell growth, differentiation into basal or luminal cell phenotype, and BC cell motility. BARR1 and BARR2 regulate malignant progressions, such as muscle invasion, metastasis, and resistance to chemotherapy drugs. Three specific aims are proposed: 1. To investigate the mechanism by which BARR1 and BARR2 regulate BC growth, cancer stem cell phenotype, and invasive/metastatic potential; 2. To investigate whether modulation of the levels of BARR1 and BARR2 alters the response to Gem treatment in preclinical BC models. Also, test the potential of tetrahydrouridine, an inhibitor of intracellular Gemcitabine metabolism, to sensitize chemotherapy-resistant Patient-derived bladder tumor xenografts (PDX) towards Gemcitabine; 3. To investigate the potential of BARR1 and BARR2 expression as a predictor of chemotherapy response and clinical outcome in MIBC. The investigators consider the high impact of this project on improving the prediction of treatment-response in high- grade bladder cancers as well as therapy response using a combination of a non-toxic drug and an established chemotherapy drug. The proposed studies have the potential to improve bladder cancer treatment and outcome for U.S. Veterans.
Similar projects All >
Sorted by: Start Date
Project list item
Epigenetic regulators of subtype plasticity in bladder cancer

Bladder Cancer Advocacy Network to John Robert Christin

USD 1,700
2020 - 2020
Project list item
Defining NRF2 induced tumor invasion in bladder cancer

Bladder Cancer Advocacy Network to Yuki Kita, William Youngkwan Kim, Bernard Weissman

USD 50,000
2020 - 2021
Project list item
Implication of neutrophil extracellular traps in the efficacy of bladder-sparing therapy in muscle invasive bladder cancer

Canadian Institutes of Health Research to Wassim Kassouf, Jonathan David Spicer, Ciriaco A. Piccirillo

USD 138,878
2020 - 2025
Project list item
Dissecting myeloid cell-mediated resistance to immune checkpoint blockade in bladder cancer


USD 703,400
2020 - 2025
Project list item
Chemotherapy plus PD-1 blockade as bladder-sparing treatment for muscle-invasive bladder cancer

V Foundation for Cancer Research to Matthew D Galsky

USD 600,000
2019 - 2022



    1112 Oncology and Carcinogenesis

  • RCDC


  • RCDC

    Digestive Diseases

  • RCDC


  • RCDC

    Clinical Research

  • RCDC

    Urologic Diseases




    2.1 Biological and endogenous factors


    5.1 Pharmaceuticals


    6.1 Pharmaceuticals

  • Health Research Areas


  • Broad Research Areas

    Clinical Medicine and Science