Please enable JavaScript or talk to your local administrator to get JavaScript enabled.

Project

Portable electrochemical assay system for on-chip quantitative estimation of bladder cancer biomarkers in real samples

Funder: European Commission

Funding period
EUR 195 K
USD 218 K
Funding amount
Abstract
Cancer is a leading cause of death worldwide and the best approaches to improve cancer survival rate is to diagnose it at an early stage. In spite of the rapid explosion of new technology platforms, traditional optical ELISA is used in clinical practice, which is laborious, time-consuming, require large sample volume and suffer from low sensitivity. On the other hand, recently proposed electrochemical sensors which promise easy operation, accuracy, high sensitivity, low cost and compact size mainly suffer from background signals, non-specificity and selectivity in clinical samples. Therefore, there is an urgent need to solve the key issues in the development of clinically relevant and commercially viable technologies that enable screening of high-risk individuals for cancer at an early stage. The proposed program is to develop a reliable point-of-care (POC) diagnostic system based on a multidisciplinary approach of integrated microfluidic and electrochemistry for multiple biomarker detection in clinical samples. The proposal aims at finding solutions for key issues of non-specificity, sensitivity and selectivity in clinical samples for sensitive and multiplexed detection. The proposal will address the above mentioned challenges, via separation of assay chamber and detection chamber with innovative surface chemistry and microfluidic design with electrochemical detection techniques. Work will be focused on bladder cancer as a test model to solve the above mentioned issues. The proposed device will be of bench top size and have capabilities to detect a panel of 3 or more biomarkers simultaneously. The successful outcome of the project will result in high impact publications, technology know-how and IP, which will be used to design and develop a prototype device. A secondment at Applied Enzyme Technology Ltd, Gwent Group (GWENT) will be used to study optimization of sensor shelf life and to ensure the developed system meets industrial standards.
Similar projects All >
Sorted by: Start Date
Project list item
Dissecting myeloid cell-mediated resistance to immune checkpoint blockade in bladder cancer

National Cancer Institute to NINA BHARDWAJ, JUN ZHU, MATTHEW GALSKY

USD 703,400
2020 - 2025
Project list item
Identification and analysis of early prognostic markers of bladder cancer using generated nanobodies

Russian Science Foundation to Sergei Tillib

 
2020 - 2022
Project list item
Developing a SMART scaffold for bladder augmentation

National Institute of Biomedical Imaging and Bioengineering to GUILLERMO ANTONIO AMEER, JOHN ROGERS, ARUN SHARMA

USD 1,399,891
2019 - 2023

System

Categories
  • FOR (ANZSRC)

    0301 Analytical Chemistry

  • FOR (ANZSRC)

    1004 Medical Biotechnology

  • RCDC

    Bioengineering

  • RCDC

    Cancer

  • RCDC

    Clinical Research

  • RCDC

    Prevention

  • HRCS HC

    Cancer

  • HRCS RAC

    4.1 Discovery and preclinical testing of markers and technologies

  • HRCS RAC

    4.2 Evaluation of markers and technologies