Please enable JavaScript or talk to your local administrator to get JavaScript enabled.

Project

Defining the temporal sequence of PI3K pathway mutations in bladder cancer

Funder: National Cancer Institute

Funding period
USD 1.8 M
Funding amount
Abstract
DESCRIPTION (provided by applicant): Bladder cancer is the fifth most common cancer in the US and the fourth most common in men. Radical surgery remains the standard of care for patients with high grade, muscle-invasive disease but despite multi-modality treatment, approximately half of such patients develop metastatic disease, which is with rare exception fatal. Here, a custom next generation sequencing assay will be employed to define the spectrum of co-mutational events in muscle-invasive bladder cancers with a focus on defining the prevalence and prognostic relevance of mutations in the PI3 kinase/AKT/mTOR pathway. To avoid selection bias, this analysis will be performed using a large, prospectively collected, sequential cohort of patients with muscle-invasive disease undergoing radical cystectomy. A field cancerization effect is observed in patients with bladder cancer whereby multiple primary tumors develop within the urinary tract. To explore a genetic basis for this phenomenon, the analysis will be extended by comparing the genomic profile of normal appearing bladder epithelium to primary tumors to matched metastatic lymph nodes and distant metastatic sites. One goal of these studies will be to determine the temporal sequence of mutational events in bladder cancer with a focus on the timing of PI3 kinase alterations in disease progression. Functional studies will focus on genes that are commonly co-mutated with PI3 kinase pathway alterations to identify aberrations that enhance or abrogate tumor invasion and/or PI3 kinase and mTORC1-dependence. Finally, preliminary genomic data indicate that PI3 kinase pathway alterations are common and occur in a mutually exclusive pattern in patients with bladder cancer, suggesting overlapping functional effects. To directly compare the functional consequences of PTEN and TSC1 loss in bladder cancer in depth, we will compare the phenotype of genetically engineered mouse (GEM) models with conditional inactivation of the Pten and Tsc1 genes in the bladder epithelium. Mice with bladder specific and inducible expression of shRNAs will also be generated to determine whether continued suppression of Pten and/or p53 is required for tumor maintenance in mice with established tumors. The long-term objective will be to develop GEM mice that model the pattern of co-mutations identified in human bladder cancer with the goal of using these mice to understand the contribution of specific genomic alterations to bladder cancer progression and as models to study novel therapeutic strategies.
Similar projects All >
Sorted by: Start Date
Project list item
Characterization of Nectin-4 expression in molecular subtypes of urothelial cancer and mechanisms of resistance to enfortumab vedotin

Bladder Cancer Advocacy Network to Carissa Ellen Chu

USD 1,700
2020 - 2020
Project list item
Epigenetic regulators of subtype plasticity in bladder cancer

Bladder Cancer Advocacy Network to John Robert Christin

USD 1,700
2020 - 2020
Project list item
Defining NRF2 induced tumor invasion in bladder cancer

Bladder Cancer Advocacy Network to Yuki Kita, William Youngkwan Kim, Bernard Weissman

USD 50,000
2020 - 2021
Project list item
Targeting regulatory B cells (Bregs) to improve anti-bladder cancer immunity

Bladder Cancer Advocacy Network to Burles Avner Johnson, David McConkey

USD 50,000
2020 - 2021

System

Categories
  • FOR (ANZSRC)

    0604 Genetics

  • FOR (ANZSRC)

    1112 Oncology and Carcinogenesis

  • RCDC

    Biotechnology

  • RCDC

    Human Genome

  • RCDC

    Tuberous Sclerosis

  • RCDC

    Brain Disorders

  • RCDC

    Cancer

  • RCDC

    Clinical Research

  • RCDC

    Genetics

  • RCDC

    Rare Diseases

  • RCDC

    Urologic Diseases

  • HRCS HC

    Cancer

  • HRCS RAC

    2.1 Biological and endogenous factors

  • Health Research Areas

    Biomedical

  • Broad Research Areas

    Clinical Medicine and Science