Please enable JavaScript or talk to your local administrator to get JavaScript enabled.

Project

The Role of Thromboxane A2 (TP) Receptor Beta in Bladder Cancer

Funder: National Cancer Institute

Funding period
USD 1.5 M
Funding amount
Abstract
DESCRIPTION (provided by applicant): In the US, bladder cancer is the fourth most common cancer in men and the eighth most common cancer in women. Approximately 60,000 people develop bladder cancer each year. Unfortunately, recurrence, invasion, and metastasis, even after a seemingly successful treatment at a very early stage, are characteristic of bladder cancer. Studies directed towards elucidation of the factors involved in its progression should facilitate the design of molecularly based diagnostic and therapeutic approaches. Our preliminary data demonstrate that: (i) the thromboxane A2 (TP) beta receptor isoform uniquely is over-expressed in human bladder cancer and cell lines and over-expression is correlated with a poorer prognosis in patients; (ii) TP beta, but not TP alpha, receptor expression increases malignant phenotypes in vitro and produces a malignant transformation of immortalized bladder epithelial cells in vivo; (iii) TP receptor antagonists reduce bladder cancer cell growth, migration and invasion and inhibit tumor growth in vivo; and (iv) urinary TXB2 and TP beta receptor protein are significantly greater in bladder cancer patients compared to controls, supporting potential diagnostic and prognostic utility. Based upon our preliminary studies and published literature, we hypothesize that the increased expression of TP beta receptor and activation of its signaling pathways play a critical role in bladder cancer cell growth and metastases. To define the oncogenic potential of TP beta receptor signaling, we propose the following specific aims: 1: Determine the proximal mediators (G protein dependent and independent) of the signaling pathways coupled to the TP beta receptor isoform responsible for bladder cancer cell migration, invasion, and proliferation; 2. Determine the mechanism of the regulation by TP beta of the downstream effectors (tumor suppressor PTEN and pro-angiogenic pleiotrophin) responsible for its induced malignant phenotype and 3. Determine whether tissue expression of TXAS, TP beta receptor, urinary TXB2, urinary TP beta receptor, and down-stream effectors exhibit prognostic significance in the progression of human bladder cancer. The proposed studies utilize a combination of molecular and cellular techniques, mouse models when appropriate and clinical studies. These approaches provide a comprehensive analysis of possible tumor-related functions of TP beta receptor-signaling, and may identify a new therapeutic target for bladder cancer, and maybe other cancers.
Similar projects All >
Sorted by: Start Date
Project list item
Intravesical delivery of an Fc-enhanced CD40 agonist antibody for the treatment of bladder cancer

Bladder Cancer Advocacy Network to Jeffrey Ravetch, David Knorr

USD 300,000
2020 - 2022
Project list item
Epigenetic regulators of subtype plasticity in bladder cancer

Bladder Cancer Advocacy Network to John Robert Christin

USD 1,700
2020 - 2020
Project list item
Characterization of Nectin-4 expression in molecular subtypes of urothelial cancer and mechanisms of resistance to enfortumab vedotin

Bladder Cancer Advocacy Network to Carissa Ellen Chu

USD 1,700
2020 - 2020
Project list item
Recombinant CCL2 as a novel treatment strategy for bladder cancer

Bladder Cancer Advocacy Network to Neelam Mukherjee, Robert Scott Svatek

USD 50,000
2020 - 2021
Project list item
Defining NRF2 induced tumor invasion in bladder cancer

Bladder Cancer Advocacy Network to Yuki Kita, William Youngkwan Kim, Bernard Weissman

USD 50,000
2020 - 2021

System

Categories
  • FOR (ANZSRC)

    0601 Biochemistry and Cell Biology

  • FOR (ANZSRC)

    1112 Oncology and Carcinogenesis

  • RCDC

    Cancer

  • RCDC

    Clinical Research

  • RCDC

    Urologic Diseases

  • HRCS HC

    Cancer

  • HRCS RAC

    2.1 Biological and endogenous factors

  • HRCS RAC

    5.1 Pharmaceuticals

  • Health Research Areas

    Biomedical

  • Broad Research Areas

    Basic Science